The Radiation Response of the High Dielectric-Constant Hafnium Oxide/Silicon System

نویسنده

  • A. Y. Kang
چکیده

We have explored the radiation response of the HfO2/Si system with a combination of capacitance versus voltage and electron spin resonance measurements on capacitor and bare oxide structures subjected to Co gamma irradiation and vacuum ultraviolet irradiation. Our studies have utilized both (100)Si and (111)Si substrate structures. Capacitors have been irradiated under both positive and negative gate bias as well as with the gate floating. We find the “electronic” radiation response of the HfO2/Si system to be different from that of the Si/SiO2 system. However, we find that the HfO2/Si interface defects and their response to hydrogen are quite similar to those of the Si/SiO2 interface defects. We also find that the HfO2/Si atomic scale defects and their response to irradiation different from that of the Si/SiO2 system. We find the radiation response of the HfO2/Si capacitors to be dominated by a very large buildup of negative oxide charge. We observe comparably little, if any, generation of Si/dielectric interface trap density, though we do observe substantial densities of Si/dielectric interface trap defects. The concentration of these defects is not measurably altered by irradiation. The structure of the most prominently observed HfO2/Si interface defects is somewhat similar to those observed in Si/SiO2 systems. We observe comparatively little, if any, generation of slow traps/border traps/switching traps near the Si/HfO2 interface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Ionizing Radiation Sensor Using a Pre-Programmed MAHAOS Device

Metal-aluminum oxide-hafnium aluminum oxide-silicon oxide-silicon (hereafter MAHAOS) devices can be candidates for ionizing radiation sensor applications. In this work, MAHAOS devices (SONOS-like structures with high k stack gate dielectric) were studied regarding the first known characterization of the ionization radiation sensing response. The change of threshold voltage V(T) for a MAHAOS dev...

متن کامل

Design and Simulation of Compact, High Capacitance Ratio RF MEMS Switches using High-K Dielectric Material

In this paper, RF MEMS Capacitive Switches for two different dielectrics hafnium oxide (HfO2) and silicon nitride (Si3N4) are presented. The switches have been characterized and compared in terms of RF performance. The major impact of the change from Si3N4 to HfO2 having dielectric constant 20 is the reduction in overall dimension of the switch; capacitive area is reduced by 66% leading to over...

متن کامل

High dielectric constant oxides

The scaling of complementary metal oxide semiconductor (CMOS) transistors has led to the silicon dioxide layer used as a gate dielectric becoming so thin (1.4 nm) that its leakage current is too large. It is necessary to replace the SiO2 with a physically thicker layer of oxides of higher dielectric constant (κ) or ‘high K’ gate oxides such as hafnium oxide and hafnium silicate. Little was know...

متن کامل

Effect of High-K Dielectric Materials on Leakage Current

Abstract: In this paper, a comparative study of different high-k dielectric materials based on tunneling current density has been deployed. The various types of high-k dielectric materials such as aluminium oxide, hafnium oxide, silicon nitride are compared using Schrödinger equation. The analytical model of tunneling current density has been computed using WKB approximation method. The simulat...

متن کامل

Scaling of Dimensions & Gate Capacitances of MOSFET

The scaling of complementary metal oxide semiconductor (CMOS) transistors has led to the silicon dioxide layer used as a gate dielectric becoming so thin (1.4 nm) that its leakage current is too large. It is necessary to replace the SiO2 with a physically thicker layer of oxides of higher dielectric constant (κ) or ‘high K’ gate oxides such as hafnium oxide and hafnium silicate. Little was know...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001